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Long-range anticorrelations and non-Gaussian behavior of a leaky faucet
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We find that intervals between successive drops from a leaky faucet display scale-invariant, long-range
anticorrelations characterized by the same exponents of heartbeat-to-heartbeat intervals of healthy subjects.
From this analysis leaky faucets should be considered as a system in criticality. This behavior is also confirmed
by numerical simulations on a lattice and it is independent of faucet width and flow rate. The histogram for the
drop intervals is also well described by a Lévy distribution with the same index for both histograms of healthy
and diseased subjects. This additional result corroborates the evidence for similarities between leaky faucets

and healthy hearts underlying dynamics.

PACS number(s): 87.10.+e, 05.40.+j

Very recently, long-range power-law correlations have
been reported in a wide variety of systems such as DNA
sequences [1], stock market fluctuations [2], literary pieces
[3], and heartbeat intervals [4,5]. Due to this power-law be-
havior it is possible to characterize these diverse phenomena
by critical exponents and, through the latter, to identify simi-
larities between the systems. In this paper, we present an
example of this connection. We measured experimentally the
exponents from time series of drops in leaky faucets and we
found the same values as obtained by Peng et al. [4] for
heartbeat time series. Furthermore, we find that the statistics
of this process is also described by Lévy distribution. Scale
invariance and non-Gaussian behaviors were confirmed by a
theoretical model for two-dimensional drops.

Leaky faucets are dynamical systems presenting complex
behavior in drop-to-drop interval time series. It has been
confirmed by experimental data [6—9] and through numerical
simulations [10]. The most relevant parameter in this case is
the flow rate. In Figs. 1(a) and 1(b) we present two experi-
mental time series and the return maps constructed plotting
the time interval B(n) between drop »n and drop n+1 (we
adopt the same notation as Ref. [4]). The experimental setup
is described in Ref. [9]. Each set of experimental data con-
sists of 8192 drops. We measured 14 sets at different flow
rates.

Recently, a numerical procedure to simulate dripping fau-
cets was introduced [10]. This model is based on the near
and next-nearest neighbor Ising model on a square lattice,
where a spin up (down) represents the fluid (air). The earth’s
gravitation is imposed as a magnetic field varying uniformly
in the vertical direction, and the dynamics is mass-
conservative. The return maps obtained from this model are
quite similar to those measured on thin faucets [8,9] (inner
diameter < 1 mm). From numerical simulations we have
obtained time series with up to 256 X 10° drops and 40 val-
ues of flow rate and faucet width. Since we can represent the
air-fluid system by Boolean variables, the bit-handling tech-
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niques for time and memory saving [11] can be used, allow-
ing the implementation of our code on microcomputers. Our
simulations were carried out in a 486-DX2 microcomputer.
In all the cases we have studied, the time series are similar
to the ones presented in Fig. 1 and to electrocardiograms of
healthy subjects [4,12]. Electrocardiograms of patients with
dilated cardiomyopathy are smoother than the ones presented
here. We can observe the complex pattern of fluctuations
emerging in all cases. In the leaky faucet time series, the
fluctuations are also related to competition. In the heart,
parasympathetic stimulation decreases the firing rate of pace-
maker cells whereas sympathetic stimulation acts in the op-
posite direction. Analogously, in a drop, cohesive forces
which create surface tension, which tends to decrease the
dripping rate, and gravity are the competing forces. This
competition has a nonlinear character and is the natural can-
didate to explain this complex mechanism. The similarity in
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FIG. 1. The drop-to-drop interval B(n), in ms units, for differ-
ent flow rates: (a) 25 drops/s, (b) 40 drops/s (time series and return
maps).
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FIG. 2. Log-log plot of F(n) vs n for those time series pre-
sented in Fig. 1. From regression we have found respectively a=
0.001 (a); —0.001 (b). Curves (c) and (d) are means to a random
ordering in time of the events of original time series (a) and (b),

respectively.

the underlying dynamics of these systems is that this compe-
tition is controlled by the surface-volume ratio. This state-
ment is confirmed since this behavior has been found even in
the simplified model for two-dimensional leaky faucets, in
which no kinetic energy terms (besides the thermal Metropo-
lis energy) were added.

A quantity frequently used to characterize sequences such
as those shown in Fig. 1 is the mean fluctuation function

F(n), defined as

F(n)=|B(n'+n)—B(n")|, 0

where the bar denotes average over all values of n’' (for a
complete description of characterizing sequences as time se-
ries and random walks, see Refs. [5,13]). If the sequence is a
random walk, or the correlations are local, then F (n)~n”2
and if no characteristic length exists, F(n)~n%, with «
#1/2. Although this power-law behavior is well defined for
infinite sequences, it is possible to estimate and minimize the
finite size effects [14,15]. The log-log plots of F(n) vs n for
the data of Fig. 1 are presented in Fig. 2. We took 50 differ-
ent samples of 8192 drops, where the sample size is 1024 in
order to reduce the fluctuations in the exponent «. For the 54
sequences studied we found a ranging between —0.08 and
0.09. Let us stress here that this result is found to be inde-
pendent of faucet width and flow rate. If the fluctuations
decay algebraically, the correlation function is also described
by a power law [C(n)~(1/n)”] [S]. The exponents are not
independent, since

a=———-m2 . ()
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FIG. 3. Histogram of I(n) (open circles) and respective best fits
for Gaussian (dotted line) and Lévy (solid line) distributions. The
parameters for the best fit Lévy distribution are ¢=1.73 and
y=0.26. Frequently the histograms present three peaks: the largest
one whose mean value vanishes, and two symmetric others (the one
corresponding to large drops followed by small ones and the other
corresponding to the inverse event). We select to show here a situ-
ation where only one peak appears, hence the fit is more reliable.

In addition, this physical system (besides the healthy heart)
presents anticorrelations. It was widely believed that the cor-
relation function should decay exponentially. According to
our results, leaky faucets (and healthy hearts) works at a
critical regime, instead of a chaotic one. Our results have
greater precision than those of Ref. [4], due mainly to diffi-
culty in controlling the patients during long time as required.
Hence, leaky faucets seem to be good laboratories to test
these kind of studies since they have no physiological con-
straints. In addition, since we have measured flow rates as
low as 7.7 drops/s, i.e., 8192 drops in less than 20 min, long
time instabilities are irrelevant in the range of sequences. We
also show, in Figs. 2(c) and 2(d), two curves corresponding
to a deliberated prepared random ordering of interdrop incre-
ments, defined as I(n)=B(n+1)—B(n). For these new se-
ries, we found a=0.5, which characterize an uncorrelated
sequence. These results confirm the mathematical and pro-
gramming procedures that we have used.

Another fact reinforcing the analogy between healthy
hearts and leaky faucets concerns the histograms of interdrop
increments I(n). In Fig. 3 we reproduce the best fit of a
Lévy stable distribution [16]:

1 o
P, ¢,8)= ;;fo exp(— 8q¥)cos(qI)dg 3)

for the set of experimental data presented in Fig. 1(b). The
data were fitted using the recently introduced technique of
generalized simulated annealing [17] minimizing the squared
error between experimental data and predicted values [2].
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The values of ¢ were found to range between 1.66 and
1.85, for diverse experimental and numerical data. The
Lorentzian distribution is a special case of Eq. (3) with
=1 and the Gaussian distribution corresponds to = 2. For
both healthy and diseased hearts one has =1.7 [4]. This
agreement strongly suggests that correlations are produced
by the same underlying dynamics in human hearts and leaky
faucets. Another remarkable similarity is the better fit to
positive values of I than to negative ones, exactly as for
human hearts [4]. It is important to stress that its non-
Gaussian behavior is independent of the aforementioned re-
sults concerning long-range correlations, because only these
latter depend on the ordering of the events [compare Figs.
2(a) and 2(b) with 2(c) and 2(d). Therefore this feature
should be interpreted as additional evidence for similarities
between heartbeats and leaky faucets dynamics. While in
Ref. [4], the authors suggest that the slow decay of Lévy
distributions may be of physiological importance, we do not
understand why this behavior appears on leaky faucets. It is
also remarkable that these behaviors had been also detected
in the theoretical model. Whereas the attractors of real leaky
faucet dynamics are strongly dependent on several param-
eters such as viscosity, diameter and shape of the faucet, etc.
[18], the exponents remains the same as the simplified two-
dimensional model. This result points out that scale-invariant
behavior is inherent to the dynamics.

We also performed standard spectral analysis on our se-
quences. Figure 4 is a log-log plot of the power spectra S(f),
the square of the Fourier transform amplitudes for I(n). The
power-law form

S(H~ WP )

confirms that we have a long-range correlated sequence. The
value 8= —1 indicates a nontrivial correlation at all time
scales. The relation 8=2a—1 is observed with great accu-
racy (8=1.05), although the dispersion in B is remarkably
larger than in a.

In summary, we have found that time series from leaky
faucets display scale-invariant and long-range correlations.
The exponents of the fluctuation function and power spectra
are numerically the same as the ones from healthy hearts. It
is well know that many systems in nature can display this
type of scaling behavior. However, since the histograms of
drop-to-drop intervals are also well described by Lévy statis-
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FIG. 4. Power spectra S(f) for the interval increments for the
time series presented in Fig. 1. A straight line corresponding to the
B=—1 curve is presented for comparison.

tics, with the same index as healthy and diseased hearts, we
can suspect that the dynamics of these systems is governed
by the same mechanism triggered by the surface-volume ra-
tio. Even a simplified model for leaky faucets [10] reflects
these properties, therefore this mechanism is robust to in-
creasing of complexity. Therefore, it is not surprising, from
an adaptive point of view, that the healthy heart behaves as a
leaky faucet and the diseased one does not. This theoretical
model can be useful, due to its simplicity, in order to get a
better understanding of the underlying dynamics. The pres-
ence of long-range correlations in biological systems is fre-
quently associated with -adaptive behavior. Clearly, leaky
faucets do not belong to the class of systems presenting evo-
lution but we believe that the present results do not discard
the suggestion of healthy heart adaptive behavior. The sup-
pression of an excessive mode locking due to lack of a char-
acteristic time scale is a considerable advantage of healthy
hearts [4,12]. The fact that simple hydrodynamical systems,
such as leaky faucets, present long-range anticorrelations,
suggests that some similar mechanism may have been impor-
tant, in the evolutive process, for the heart beating.
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